Advertisement
Research Article| Volume 28, ISSUE 3, P227-242, September 2022

Surgically assisted rapid palatal expansion: is the pterygomaxillary disjunction necessary? A finite element study

Published:November 03, 2022DOI:https://doi.org/10.1053/j.sodo.2022.10.017

      Abstract

      Transverse discrepancy is an important factor in determining facial esthetics. It has been shown there is an inverse correlation between the buccal corridor width and the intercanine and intermolar widths. Despite the fact midpalatal expansion is the treatment of choice for growing subjects, for skeletally mature subjects the rapid palatal expansion has limited orthopedic effects, and surgically assisted rapid palatal expansion (SARPE) is preferred. SARPE has shown inconsistencies depending on the surgical technique and/or expander device design. Some authors suggest that median and lateral osteotomies are sufficient to achieve the desired transverse dimensions using the SARPE procedure, while others recommend additional surgical separation of the pterygomaxillary junction. There are still controversies regarding the pterygomaxillary sutures (PMS) disjunction effect. Therefore, this study aimed to evaluate the displacement and stress distribution of the craniofacial structures resulting from SARPE, either with or without PMS osteotomy, using two different expander design (tooth-borne and tooth-bone-borne) using finite element method and finite element analysis (FEM/FEA). Regardless of the maxillary expander device type, both SARPE surgical techniques effectively produced maxillary expansion. SARPE with PMS osteotomy presented parallel maxillary expansion, and reduced stress values in the craniofacial and maxillofacial structures.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seminars in Orthodontics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Langlois J.H.
        • Kalakanis L.
        • Rubenstein A.J.
        • Larson A.
        • Hallam A.
        • Smoot M.
        Maxims or myths of beauty? A meta-analytic and theoretical review.
        Psychol Bull. 2000; 126: 390-423
        • Hosoda M.
        • Stone-Romero E.F.
        • Coats G.
        The effects of physical attractiveness on job-related outcomes: a meta-analysis of experimental studies.
        Personnel Psychol. 2003; 56: 431-462
        • Roden-Johnson D.
        • Gallerano R.
        • English J.
        The effects of buccal corridor spaces and arch form on smile esthetics.
        Am J Orthod Dentofacial Orthop. 2005; 127: 343-350
        • Parekh S.M.
        • Fields H.W.
        • Beck M.
        • Rosenstiel S.
        Attractiveness of variations in the smile arc and buccal corridor space as judged by orthodontists and laymen.
        Angle Orthod. 2006; 76: 557-563
        • Oshagh M.
        • Zarif N.H.
        • Bahramnia F.
        Evaluation of the effect of buccal corridor size on smile attractiveness.
        Eur J Esthet Dent. 2010; 5: 370-380
        • Moore T.
        • Southard K.A.
        • Casko J.S.
        • Qian F.
        • Southard T.E.
        Buccal corridors and smile esthetics.
        Am J Orthod Dentofacial Orthop. 2005; 127: 208-213
        • Ritter D.E.
        • Gandini L.G.
        • Pinto A dos S.
        • Locks A.
        Esthetic influence of negative space in the buccal corridor during smiling.
        Angle Orthod. 2006; 76: 198-203
        • Martin A.J.
        • Buschang P.H.
        • Boley J.C.
        • Taylor R.W.
        • McKinney T.W.
        The impact of buccal corridors on smile attractiveness.
        Eur J Esthet Dent. 2007; 29: 530-537
        • McNamara L.
        • Mc Jr, N.J.A.
        • Ackerman M.B.
        • Baccetti T.
        Hardand soft-tissue contributions to the esthetics of the posed smile in growing patients seeking orthodontic treatment.
        Am J Orthod Dentofacial Orthop. 2008; 133: 491-499
        • Carvalho A.
        • Goldenberg F.C.
        • Angelieri F.
        • et al.
        Assessment of changes in smile after rapid maxillary expansion.
        Dental Press J Orthod. 2012; 17: 94-101
        • Shook C.
        • Kim S.M.
        • Burnheimer J.
        Maxillary arch width and buccal corridor changes with Damon and conventional brackets: a retrospective analysis.
        Angle Orthod. 2016; 86: 655-660
        • Proffit W.R.
        Prevalence of malocclusion and orthodontic treatment need in the United States: estiamates from the NHANES III survey.
        Int J Adult Orthod Orthognath Surg. 1998; 13: 97-106
        • Betts N.J.
        • Vanarsdall R.L.
        • Barber H.D.
        • Higgins-Barber K.
        • Fonseca R.J.
        Diagnosis and treatment of transverse maxillary deficiency.
        Int J Adult Orthodon Orthognath Surg. 1995; 10: 75-96
        • Carvalho P.H.A.
        • Moura L.B.
        • Trento G.S.
        • Holzinger D.
        • Gabrielli M.A.C.
        • Gabrielli M.F.R.
        • Pereira Filho V.A.
        Surgically assisted rapid maxillary expansion: a systematic review of complications.
        Int J Oral Maxillofac Surg. 2020; 49: 325-332
        • Verstraaten J.
        • Kuijpers-Jagtman A.M.
        • Mommaerts M.Y.
        • Bergé S.J.
        • Nada R.M.
        • Schols J.G.
        • Eurocran Distraction Osteogenesis Group
        A systematic review of the effects of bone-borne surgical assisted rapid maxillary expansion.
        J Craniomaxillofac Surg. 2010; 38: 166-174
        • Yoon S.
        • Lee D.Y.
        • Jung S.K.
        Influence of changing various parameters in miniscrew-assisted rapid palatal expansion: a three-dimensional finite element analysis.
        Korean J Orthod. 2019; 49: 150-160
        • Lin L.
        • Ahn H.W.
        • Kim S.J.
        • Moon S.C.
        • Kim S.H.
        • Nelson G.
        Tooth-borne vs bone-borne rapid maxillary expanders in late adolescence.
        Angle Orthod. 2015; 85: 253-262
        • Seong E.H.
        • Choi S.H.
        • Kim H.J.
        • HS Yu
        • Park Y.C.
        • Lee KJ.
        Evaluation of the effects of miniscrew incorporation in palatal expanders for young adults using finite element analysis.
        Korean J Orthod. 2018; 48: 81-89
        • Lines P.A.
        Adult rapid maxillary expansion with corticotomy.
        Am J Orthod. 1975; 67: 44-56
        • Proffit W.R.
        • Turvey T.A.
        • Phillips C.
        Orthognathic surgery: a hierarchy of stability.
        Int J Adult Orthodon Orthognath Surg. 1996; 11: 191-204
        • Pogrel M.A.
        • Kaban L.B.
        • Vargervik K.
        • Baumrind S.
        Surgically assisted rapid maxillary expansion in adults.
        Int J Adult Orthodon Orthognath Surg. 1992; 7: 37-41
        • Koudstaal M.J.
        • Poort L.J.
        • van der Wal K.G.
        • Wolvius E.B.
        • Prahl-Andersen B.
        • Schulten A.J.
        Surgically assisted rapid maxillary expansion (SARME): a review of the literature.
        Int J Oral Maxillofac Surg. 2005; 34: 709-714
        • Holberg C.
        • Rudzki-Janson I.
        Stresses at the cranial base induced by rapid maxillary expansion.
        Angle Orthod. 2006; 76: 543-550
        • Kokich V.G.
        Age changes in the human frontozygomatic suture from 20 to 95 years.
        Am J Orthod. 1976; 69: 411-430
        • Turvey T.A.
        Maxillary expansion: a surgical technique based on surgical-orthodontic treatment objectives and anatomical considerations.
        J Maxillofac Surg. 1985; 13: 51-58
        • Handelman C.S.
        Nonsurgical rapid maxillary alveolar expansion in adults: a clinical evaluation.
        Angle Orthod. 1997; 67 (discussion 306–8): 291-305
        • Byloff F.K.
        • Mossaz C.F.
        Skeletal and dental changes following surgically assisted rapid palatal expansion.
        Eur J Orthod. 2004; 26: 403-409
        • Suri L.
        • Taneja P.
        Surgically assisted rapid palatal expansion: a literature review.
        Am J Orthod Dentofacial Orthop. 2008; 133: 290-302
        • Lehman Jr., J.A.
        • Haas A.J.
        • Haas D.G.
        Surgical orthodontic correction of transverse maxillary deficiency: a simplified approach.
        Plast Reconstr Surg. 1984; 73: 62‑8
        • Bays R.A.
        • Greco J.M.
        Surgically assisted rapid palatal expansion: an outpatient technique with long‑term stability.
        J Oral Maxillofac Surg. 1992; 50: 110‑3
        • Betts N.J.
        • Ziccardi V.B.
        Surgically assisted maxillary expansion.
        in: Fonseca R.J. Oral and maxillofacial surgery. W. B. Saunders, Philadelphia2000: 211-231
        • Seeberger R.
        • Kater W.
        • Davids R.
        • Thiele O.C.
        Long term effects of surgically assisted rapid maxillary expansion without performing osteotomy of the pterygoid plates.
        J Craniomaxillofac Surg. 2010; 38: 175‑8
        • Sygouros A.
        • Motro M.
        • Ugurlu F.
        • Acar A.
        Surgically assisted rapid maxillary expansion: cone‑beam computed tomography evaluation of different surgical techniques and their effects on the maxillary dentoskeletal complex.
        Am J Orthod Dentofacial Orthop. 2014; 146: 748‑57
        • Möhlhenrich S.C.
        • Ernst K.
        • Peters F.
        • et al.
        Immediate dental and skeletal influence of distractor position on surgically assisted rapid palatal expansion with or without pterygomaxillary disjunction.
        Int J Oral Maxillofac Surg. 2021; 50: 649-656
        • Sankar S.G.
        • Prashanth B.
        • Rajasekhar G.
        • Prasad M.
        • Reddy G.V.
        • Priyanka J.S.
        A comparison of different osteotomy techniques with and without pterygomaxillary disjunction in surgically assisted maxillary expansion utilizing modified hybrid rapid maxillary expansion device with posterior implants: a finite element study.
        Natl J Maxillofac Surg. 2021; 12: 171-180
        • Glassman A.S.
        • Nahigian S.J.
        • Medway J.M.
        • Aronowitz H.I.
        Conservative surgical orthodontic adult rapid palatal expansion: sixteen cases.
        Am J Orthod. 1984; 86: 207-213
        • Basdra E.K.
        • Zöller J.E.
        • Komposch G.
        Surgically assisted rapid palatal expansion.
        J Clin Orthod. 1995; 29: 762-766
        • Anttila A.
        • Finne K.
        • Keski-Nisula K.
        • Somppi M.
        • Panula K.
        • Peltomäki T.
        Feasibility and long-term stability of surgically assisted rapid maxillary expansion with lateral osteotomy.
        Eur J Orthod. 2004; 26: 391-395
        • Bell W.H.
        • Jacobs J.D.
        Surgical-orthodontic correction of horizontal maxillary deficiency.
        J Oral Surg. 1979; 37: 897-902
        • Alpern M.C.
        • Yurosko J.J.
        Rapid palatal expansion in adults with and without surgery.
        Angle Orthod. 1987; 57: 245-263
        • Mehra P.
        • Cottrell D.A.
        • Caiazzo A.
        • Lincoln R.
        Life-threatening, delayed epistaxis after surgically assisted rapid palatal expansion: a case report.
        J Oral Maxillofac Surg. 1999; 57: 201-204
        • Nagaoka T.
        • Watanabe S.
        Postured voxel-based human models for electromagnetic dosimetry.
        Phys Med Biol. 2008; 53: 7047-7061https://doi.org/10.1088/0031-9155/53/24/003
      1. National bioscience database center, “BodyParts3D, The Database Center for Life Science Licensed under CC Attribution-Share alike 2.1 Japan”, National bioscience database center. https://dbarchive.biosciencedbc.jp/en/bodyparts3d/desc.html (Accessed: March 3, 2018).

        • Nagaoka T.
        • Watanabe S.
        • Sakurai K.
        • et al.
        Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry.
        Phys Med Biol. 2004; 49: 1-15
        • Mitsuhashi N.
        • Fujieda K.
        • Tamura T.
        • Kawamoto S.
        • Takagi T.
        • Okubo K.
        BodyParts3D: 3D structure database for anatomical concepts.
        Nucleic Acids Res. 2009; 37: D782-D785
        • Kronfeld R.
        Histologic study of the influence of function on the human periodontal membrane.
        J Am Dent Assoc. 1931; 18: 1242-1274
        • Hong C.
        • Lee H.
        • Webster R.
        • Kwak J.
        • Wu B.M.
        • Moon W.
        Stability comparison between commercially available mini-implants and a novel design: part 1.
        Angle Orthod. 2011; 81: 692-699
        • Peterson J.
        • Wang Q.
        • Dechow P.C.
        Material properties of the dentate maxilla. Anat. Rec. Part A.
        Discov. Mol. Cell. Evol. Biol. An Off. Publ. Am. Assoc. Anat. 2006; 88: 962-972
        • Ortún-Terrazas J.
        • Cegoñino J.
        • Santana-Penín U.
        • Santana-Mora U.
        • Pérez Del Palomar A.
        Approach towards the porous fibrous structure of the periodontal ligament using micro-computerized tomography and finite element analysis.
        J Mech Behav Biomed Mater. 2018; 79: 135-149
        • Gautam P.
        • Valiathan A.
        • Adhikari R.
        Stress and displacement patterns in the craniofacial skeleton with rapid maxillary expansion: a finite element method study.
        Am J Orthod Dentofacial Orthop. 2007; 132 (5.e1-5.e11)
        • Han U.A.
        • Kim Y.
        • Park J.U.
        Three-dimensional finite element analysis of stress distribution and displacement of the maxilla following surgically assisted rapid maxillary expansion.
        J Craniomaxillofac Surg. 2009; 37: 145-154
        • de Assis D.S.
        • Xavier T.A.
        • Noritomi P.Y.
        • Gonçales A.G.
        • Ferreira Jr, O.
        • de Carvalho P.C.
        Gonçales ES. Finite element analysis of stress distribution in anchor teeth in surgically assisted rapid palatal expansion.
        Int J Oral Maxillofac Surg. 2013; 42: 1093-1099
        • Lee S.C.
        • Park J.H.
        • Bayome M.
        • Kim K.B.
        • Araujo E.A.
        • Kook Y.A.
        Effect of bone-borne rapid maxillary expanders with and without surgical assistance on the craniofacial structures using finite element analysis.
        Am J Orthod Dentofacial Orthop. 2014; 145: 638-648
        • Romanyk D.L.
        • Vafaeian B.
        • Addison O.
        • Adeeb S.
        The use of finite element analysis in dentistry and orthodontics: critical points for model development and interpreting results.
        Semin Orthod. 2020; 26: 162-173
        • Chaconas S.J.
        • Caputo A.A.
        Observation of orthopedic force distribution produced by maxillary orthodontic appliances.
        Am J Orthod. 1982; 82: 492-501
        • Holberg C.
        • Steinhäuser S.
        • Rudzki I.
        Surgically assisted rapid maxillary expansion: midfacial and cranial stress distribution.
        Am J Orthod Dentofacial Orthop. 2007; 132: 776-782
        • Chamberland S.
        • Proffit W.R.
        Closer look at the stability of surgically assisted rapid palatal expansion.
        J Oral Maxillofac Surg. 2008; 66: 1895-1900
        • Kilic E.
        • Kilic B.
        • Kurt G.
        • Sakin C.
        • Alkan A.
        Effects of surgically assisted rapid palatal expansion with and without pterygomaxillary disjunction on dental and skeletal structures: a retrospective review.
        Oral Surg Oral Med Oral Pathol Oral Radiol. 2013; 115: 167-174
        • MacGinnis M.
        • Chu H.
        • Youssef G.
        • Wu K.W.
        • Machado A.W.
        • Moon W.
        The effects of micro-implant assisted rapid palatal expansion (MARPE) on the nasomaxillary complex – a finite element method (FEM) analysis.
        Prog. Orthod. 2014; 15: 1-15
        • Haas Junior O.L.
        • Matje P.R.B.
        • Rosa B.M.
        • et al.
        Minimally invasive surgical and miniscrew-assisted rapid palatal expansion (MISMARPE) in adult patients.
        J Craniomaxillofac Surg. 2022; 50: 211-217
        • Möhlhenrich S.C.
        • Modabber A.
        • Kniha K.
        • et al.
        Simulation of three surgical techniques combined with two different bone-borne forces for surgically assisted rapid palatal expansion of the maxillofacial complex: a finite element analysis.
        Int J Oral Maxillofac Surg. 2017; 46: 1306-1314
        • Lee R.J.
        • Moon W.
        • Hong C.
        Effects of monocortical and bicortical mini-implant anchorage on bone-borne palatal expansion using finite element analysis.
        Am J Orthod Dentofac Orthop. 2017; 151: 887-897
        • Bi Z.
        Finite element analysis applications, a systematic and practical approach.
        (Bi Z., ed.)Chapter 12-Validation and verification. Academic Press, 2018: 455-494 (pages)
        • Lee H.K.
        • Bayome M.
        • Ahn C.S.
        • Kim S.H.
        • Kim K.B.
        • Mo S.S.
        • Kook Y.A.
        Stress distribution and displacement by different bone-borne palatal expanders with micro-implants: a three-dimensional finite-element analysis.
        Eur J Orthod. 2014; 36: 531-540
        • de Assis D.S.
        • Xavier T.A.
        • Noritomi P.Y.
        Gonçales ES. Finite element analysis of bone stress after SARPE.
        J Oral Maxillofac Surg. 2014; 72 (167.e1-167.e1677)
        • Zandi M.
        • Miresmaeili A.
        • Heidari A.
        • Lamei A.
        The necessity of pterygomaxillary disjunction in surgically assisted rapid maxillary expansion: a short-term, double-blind, historical controlled clinical trial.
        J Craniomaxillofac Surg. 2016; 44: 1181-1186
        • Hamedi Sangsari A.
        • Sadr-Eshkevari P.
        • Al-Dam A.
        • Friedrich R.E.
        • Freymiller E.
        • Rashad A.
        Surgically assisted rapid palatomaxillary expansion with or without pterygomaxillary disjunction: a systematic review and meta-analysis.
        J Oral Maxillofac Surg. 2016; 74: 338-348
        • Lines P.A.
        Adult rapid maxillary expansion with corticotomy.
        Am J Orthod. 1975; 67: 44-56
        • Timms D.J.
        • Vero D.
        The relationship of rapid maxillary expansion to surgery with special reference to midpalatal synostosis.
        Br J Oral Surg. 1981; 19: 180-196