Generation of 3D digital models of the dental arches using optical scanning techniques

Published:October 11, 2018DOI:


      • Use of digital models in orthodontics.
      • Indirect approaches to generate digital full-arch models.
      • Technical principles applied for direct 3D intraoral scanning.
      • Accuracy of intraorally scanned full-arch models.


      Due to a number of benefits mainly concerning orthodontic treatment planning and issues of documentation and sharing of patient records, digital models of the dental arches are more and more replacing conventional stone models in clinical orthodontics. To date, the most common approach for generating digital models of the dental arches comprises the digitization of stone models mostly by using optically-based desktop scanner systems. This indirect approach is sufficiently accurate and achieves a largely complete model surface with relatively low equipment acquisition costs. In the recent decade, however, intraoral scanners are becoming ever more established and proven in clinical practice. The great advantage of this direct approach for generating digital models is that the intermediate step of stone cast fabrication can be omitted which eliminates material and space requirements for casts. The various commercially available intraoral scanning systems are based on the application of different optical measurement techniques. Fringe (i.e., structured-light) projection and two or more camera systems lead to a bulky arrangement and to shadowing effects which limit the accessibility of undercuts and thin volume fractions such as incisal edges. Moreover, they usually require powder coating of the teeth. Confocal laser scanners eliminate these disadvantages, although the three-dimensional (3D) movement of the scanner handpiece is disadvantageous with regard to scanning speed, accuracy and reliability. Intraoral scans generally contain a source of risk for inaccuracy, because multiple single 3D images are assembled to a complete model. Recent studies, however, have shown that the trueness and precision of intraoral scanners of commercially available scanning systems is already sufficient for orthodontic applications. Current development of novel scanner technologies, e.g. based on multipoint chromatic confocal imaging and dual wavelength digital holography, will further improve the accuracy and clinical practicability of intraoral scanning. Hence, it is likely that in future intraoral scanning combined with 3D printing will completely replace conventional stone models of the dental arches.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Seminars in Orthodontics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Whetten J.L.
        • Williamson P.C.
        • Heo G.
        • Varnhagen C.
        • Major P.W.
        Variations in orthodontic treatment planning decisions of Class II patients between virtual 3-dimensional models and traditional plaster study models.
        Am J Orthod Dentofacial Orthop. 2006; 130: 485-491
        • Rheude B.
        • Sadowsky P.L.
        • Ferriera A.
        • Jacobson A.
        An evaluation of the use of digital study models in orthodontic diagnosis and treatment planning.
        Angle Orthod. 2005; 75: 300-304[300:AEOTUO]2.0.CO;2
        • Bootvong K.
        • Liu Z.
        • McGrath C.
        • et al.
        Virtual model analysis as an alternative approach to plaster model analysis: reliability and validity.
        Eur J Orthod. 2010; 32: 589-595
        • Leifert M.F.
        • Leifert M.M.
        • Efstratiadis S.S.
        • Cangialosi T.J.
        Comparison of space analysis evaluations with digital models and plaster dental casts.
        Am J Orthod Dentofacial Orthop. 2009; 136 (discussion 16): 16.e1-16.e4
        • Radeke J.
        • Wense C.vonder
        • Lapatki B.G.
        Comparison of orthodontic measurements on dental plaster casts and 3D scans.
        J Orofac Orthop. 2014; 75: 264-274
        • Sjögren A.P.G.
        • Lindgren J.E.
        • Huggare J.A.V.
        Orthodontic study cast analysis–reproducibility of recordings and agreement between conventional and 3D virtual measurements.
        J Digit Imaging. 2010; 23: 482-492
        • Veenema A.C.
        • Katsaros C.
        • Boxum S.C.
        • Bronkhorst E.M.
        • Kuijpers-Jagtman A.M.
        Index of complexity, outcome and need scored on plaster and digital models.
        Eur J Orthod. 2009; 31: 281-286
        • Naidu D.
        • Scott J.
        • Ong D.
        • Ho C.T.C.
        Validity, reliability and reproducibility of three methods used to measure tooth widths for bolton analyses.
        Aust Orthod J. 2009; 25: 97-103
        • Gracco A.
        • Buranello M.
        • Cozzani M.
        • Siciliani G.
        Digital and plaster models: a comparison of measurements and times.
        Prog Orthod. 2007; 8: 252-259
        • Meyer S.I.D.
        Retrospektive Methodische Studie zum Vergleich von Digitaler Und Manueller Modellanalyse in Der Kieferorthopädie.
        WWU, Münster2010 ([Med Dent Diss])
        • Mullen S.R.
        • Martin C.A.
        • Ngan P.
        • Gladwin M.
        Accuracy of space analysis with emodels and plaster models.
        Am J Orthod Dentofacial Orthop. 2007; 132: 346-352
        • Torassian G.
        • Kau C.H.
        • English J.D.
        • et al.
        Digital models vs plaster models using alginate and alginate substitute materials.
        Angle Orthod. 2010; 80: 474-481
        • Elkholy F.
        • Stöckel K.
        • Lapatki B.G.
        Accuracy and time saving of automatic tooth width measurement on digital three dimensional orthodontic study models.
        in: 94th European Orthodontic Society Congress, Edinburgh2018
        • Camardella L.T.
        • Rothier E.K.C.
        • Vilella O.V.
        • Ongkosuwito E.M.
        • et al.
        Virtual setup: application in orthodontic practice.
        J Orofac Orthop. 2016; 77: 409-419
        • Schmidt F.
        • Kilic F.
        • Piro N.E.
        • Geiger M.E.
        • et al.
        Novel method for superposing 3d digital models for monitoring orthodontic tooth movement.
        Ann Biomed Eng. 2018; 46: 1160-1172
        • Align Technology
        The Invisalign System.
        2018 (Accessed July 17)
        • CA Digital GmbH
        CA Digital - Digital Orthodontics.
        2018 (Accessed July 17)
        • Müller-Hartwich R.
        • Präger T.M.
        • Jost-Brinkmann P.G.
        SureSmile–CAD/CAM system for orthodontic treatment planning, simulation and fabrication of customized archwires.
        Int J Comput Dent. 2007; 10: 53-62
        • Dedem P.
        • Turp J.C.
        Digital Michigan splint - from intraoral scanning to plasterless manufacturing.
        Int J Comput Dent. 2016; 19: 63-76
        • Graf S.
        • Cornelis M.A.
        • Hauber Gameiro G.
        • Cattaneo P.M.
        Computer-aided design and manufacture of hyrax devices: can we really go digital?.
        Am J Orthod Dentofacial Orthop. 2017; 152: 870-874
        • Quaas S.
        Untersuchungen Zur Extraoralen Mechanischen Digitalisierung von Modellen und Abformungen.
        Technische Universität Dresden, Dresden2006 ([Med Dent Diss])
        • Schenk H.J.
        • Fuchs G.
        • Wiemann C.
        • Schröter R.
        Orthodontic model analysis using various coordinate measurement technics.
        Fortschr Kieferorthop. 1986; 47: 67-75
        • Chen H.
        • Lowe A.A.
        • Almeida
        • Wong M.
        • et al.
        Three-dimensional computer-assisted study model analysis of long-term oral-appliance wear. Part 1: methodology.
        Am J Orthod Dentofacial Orthop. 2008; 134: 393-407
        • Hayasaki H.
        • Martins R.P.
        • Gandini L.G.
        • Saitoh I.
        • et al.
        A new way of analyzing occlusion 3 dimensionally.
        Am J Orthod Dentofacial Orthop. 2005; 128: 128-132
        • Boldt F.
        • Weinzierl C.
        • Hertrich K.
        • Hirschfelder U.
        Comparison of the spatial landmark scatter of various 3D digitalization methods.
        J Orofac Orthop. 2009; 70: 247-263
        • Gühring J.
        3D-Erfassung Und Objektrekonstruktion Mittels Streifenprojektion. [Dissertation].
        Universität Stuttgart, Stuttgart2002
        • Watanabe-Kanno G.A.
        • Abrão J.
        • Miasiro Junior H.
        • Sánchez-Ayala A.
        • et al.
        Reproducibility, reliability and validity of measurements obtained from Cecile3 digital models.
        Braz Oral Res. 2009; 23: 288-295
        • Steinhäuser-Andresen S.
        • Detterbeck A.
        • Funk C.
        • et al.
        Pilot study on accuracy and dimensional stability of impression materials using industrial CT technology.
        J Orofac Orthop. 2011; 72: 111-124
        • Waard
        • Rangel F.A.
        • Fudalej P.S.
        • Bronkhorst E.M.
        • et al.
        Reproducibility and accuracy of linear measurements on dental models derived from cone-beam computed tomography compared with digital dental casts.
        Am J Orthod Dentofacial Orthop. 2014; 146: 328-336
        • Alcan T.
        • Ceylanoğlu C.
        • Baysal B.
        The relationship between digital model accuracy and time-dependent deformation of alginate impressions.
        Angle Orthod. 2009; 79: 30-36
        • Asquith J.
        • Gillgrass T.
        • Mossey P.
        Three-dimensional imaging of orthodontic models: a pilot study.
        Eur J Orthod. 2007; 29: 517-522
        • Redlich M.
        • Weinstock T.
        • Abed Y.
        • Schneor R.
        • et al.
        A new system for scanning, measuring and analyzing dental casts based on a 3D holographic sensor.
        Orthod Craniofac Res. 2008; 11: 90-95
        • DeLong R.
        • Heinzen M.
        • Hodges J.S.
        • Ko C-C.
        • et al.
        Accuracy of a system for creating 3D computer models of dental arches.
        J Dent Res. 2003; 82: 438-442
      1. Wiora G. Optische 3D-Messtechnik: Präzise Gestaltvermessung Mit Einem Erweiterten Streifenprojektionsverfahren. [Heidelberg University Library].

        • Rees D.J.
        A method for assessing the proportional relation of apical bases and contact diameters of the teeth.
        Am J Orthod. 1953; 39: 695-707
        • Vogel A.B.
        • Kilic F.
        • Schmidt F.
        • Rubel S.
        • et al.
        Dimensional accuracy of jaw scans performed on alginate impressions or stone models: a practice-oriented study.
        J Orofac Orthop. 2015; 76: 351-365
        • Vogel A.B.
        • Kilic F.
        • Schmidt F.
        • Rubel S.
        • et al.
        Optical 3D scans for orthodontic diagnostics performed on full-arch impressions. Completeness of surface structure representation.
        J Orofac Orthop. 2015; 76: 493-507
      2. Breuckmann B (ed) Bildverarbeitung und optische Messtechnik in der industriellen Praxis. Grundlagen der 3D-Messtechnik, Farbbildanalyse, Holografie und Interferometrie mit zahlreichen praktischen Applikationen. München: Francis; 1993.

        • Yue J.
        • Zhao P.
        • Gerasimov J.Y.
        • et al.
        3D-printable antimicrobial composite resins.
        Adv Funct Mater. 2015; 25: 6756-6767
        • Duret F.
        Empreinte Optique.
        Université Claude Bernard, Lyon1973
        • Mörmann W.H.
        The evolution of the CEREC system.
        J Am Dent Assoc. 2006; : 7S-13S
        • Zimmermann M.
        • Mehl A.
        • Mörmann W.H.
        • Reich S.
        Intraoral scanning systems - a current overview.
        Int J Comput Dent. 2015; 18: 101-129
        • Align Technology
        iTero Intraoral Scanner.
        (Accessed January 30)
        • 3Shape
        Boost your business with Trios.
        Date: 2018
        (Accessed January 30)
        • Sirona
        Sirona Cerec® Bluecam.
        Date: 2018
        (Accessed January 30)
        • Planmeca O.y.
        Planmeca Emerald™.
        ( Accessed July 17)
        • Kienle A.
        • Hibst R.
        Light guiding in biological tissue due to scattering.
        Phys Rev Lett. 2006; 97: 18104
        • Burhardt L.
        • Livas C.
        • Kerdijk W.
        • van der Meer W.J.
        • et al.
        Treatment comfort, time perception, and preference for conventional and digital impression techniques: a comparative study in young patients.
        Am J Orthod Dentofacial Orthop. 2016; 150: 261-267
        • Sirona
        Sirona Cerec® Omnicam.
        Date: 2018
        (Accessed January 30)
        • Mayhew J.
        The interpretation of stereo-disparity information: the computation of surface orientation and depth.
        Perception. 1982; 11: 387-403
      3. Molesini G., inventor. Profile measuring instrument.

      4. Minski M., inventor. Microscopy apparatus.

        • Wilson T.
        • Sheppard C.
        Theory and Practice of Scanning Optical Microscopy.
        Academic Press, London1984
        • Molesini G.
        • Pedrini G.
        • Poggi P.
        • Quercioli F.
        Focus-wavelength encoded optical profilometer.
        Opt Commun. 1984; 49: 229-233
        • Browne M.A.
        • Akinyemi O.
        • Boyde A.
        Confocal surface profiling utilizing chromatic aberration.
        Scanning. 1992; 14: 145-153
        • Zint M.
        • Stock K.
        • Graser R.
        • et al.
        Development and verification of a novel device for dental intra-oral 3D scanning using chromatic confocal technology.
        in: Mahadevan-Jansen A. Vo-Dinh T. Grundfest W.S. Liu Q. Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XIII: SPIE. SPIE Proceedings. 2015
      5. Voco GmbH. IO-scan intraoraler 3D-scanner mit subgingivaler Zusatzfunktion; 2018. Accessed January 30.

        • Hsuan
        Review of intraoral scanners at IDS 2017.
        (Accessed July 16)
        • Jouanjean G.
        Les Empreintes Optiques Au Cabinet Dentaire.
        Université de Nantes, Nantes2013 ([Med Dent Diss])
        • Imburgia M.
        • Logozzo S.
        • Hauschild U.
        • Veronesi G.
        • et al.
        Accuracy of four intraoral scanners in oral implantology: a comparative in vitro study.
        BMC Oral Health. 2017; 17: 92
        • Mangano F.G.
        • Veronesi G.
        • Hauschild U.
        • Mijiritsky E.
        • et al.
        Trueness and Precision of Four Intraoral Scanners in Oral Implantology: a Comparative in Vitro Study.
        PLoS ONE. 2016; 11e0163107
        • Duvert R.
        • Gebeile-Chauty S.
        Is the precision of intraoral digital impressions in orthodontics enough?.
        Orthod Fr. 2017; 88: 347-354
        • Flügge T.V.
        • Schlager S.
        • Nelson K.
        • Nahles S.
        • et al.
        Precision of intraoral digital dental impressions with iTero and extraoral digitization with the iTero and a model scanner.
        Am J Orthod Dentofacial Orthop. 2013; 144: 471-478
        • Gan N.
        • Xiong Y.
        • Jiao T.
        Accuracy of intraoral digital impressions for whole upper jaws, including full dentitions and palatal soft tissues.
        PLoS ONE. 2016; 11e0158800
        • Kamimura E.
        • Tanaka S.
        • Takaba M.
        • Tachi K.
        • et al.
        In vivo evaluation of inter-operator reproducibility of digital dental and conventional impression techniques.
        PLoS ONE. 2017; 12e0179188
        • Patzelt S.B.M.
        • Bishti S.
        • Stampf S.
        • Att W.
        Accuracy of computer-aided design/computer-aided manufacturing-generated dental casts based on intraoral scanner data.
        J Am Dent Assoc. 2014; 145: 1133-1140
        • Anh J-W.
        • Park J-M.
        • Chun Y-S.
        • Kim M.
        • et al.
        A comparison of the precision of three-dimensional images acquired by 2 digital intraoral scanners: Effects of tooth irregularity and scanning direction.
        Korean J Orthod. 2016; 46: 3-12
        • Lim J-H.
        • Park J-M.
        • Kim M.
        • Heo S-J.
        • et al.
        Comparison of digital intraoral scanner reproducibility and image trueness considering repetitive experience.
        J Prosthet Dent. 2017;
        • Patzelt S.B.M.
        • Emmanouilidi A.
        • Stampf S.
        • Strub J.R.
        • et al.
        Accuracy of full-arch scans using intraoral scanners.
        Clin Oral Invest. 2014; 18: 1687-1694
        • Zimmermann M.
        • Koller C.
        • Rumetsch M.
        • Ender A.
        • et al.
        Precision of guided scanning procedures for full-arch digital impressions in vivo.
        J Orofac Orthop. 2017; 78: 466-471
        • Grünheid T.
        • McCarthy S.D.
        • Larson B.E.
        Clinical use of a direct chairside oral scanner: An assessment of accuracy, time, and patient acceptance.
        Am J Orthod Dentofacial Orthop. 2014; 146: 673-682
        • Park J-M.
        • Choi S-A.
        • Myung J-Y.
        • Chun Y-S.
        • et al.
        Impact of orthodontic brackets on the intraoral scan data accuracy.
        Biomed Res Int. 2016; 20165075182
        • Marxkors R.
        Lehrbuch der zahnärztlichen Prothetik. 4., überarb. Aufl. Köln: Dt. Zahnärzte-Verl.
        • van der Meer WJ
        • Andriessen FS
        • Wismeijer D
        • Ren Y
        Application of intra-oral dental scanners in the digital workflow of implantology.
        PLoS ONE. 2012; 7: e43312
        • Rudolph H
        • Salmen H
        • Moldan M
        • Kuhn K
        • Sichwardt V
        • Wöstmann B
        • et al.
        Accuracy of intraoral and extraoral digital data acquisition for dental restorations.
        J Appl Oral Sci. 2016; 24: 85-94